Rcpp_matrix_vector_blockMult
C++ Function Reference
1 Signature
Rcpp::RObject BigDataStatMeth::Rcpp_matrix_vector_blockMult(T A, T B, Rcpp::Nullable< bool > bparal, Rcpp::Nullable< int > iblock_size, Rcpp::Nullable< int > threads)2 Description
Block-based matrix-vector multiplication.
3 Parameters
A(T): Input matrixB(T): Input vectorbparal(Rcpp::Nullable< bool >): Whether to use parallel processingiblock_size(Rcpp::Nullable< int >): Block size for computationthreads(Rcpp::Nullable< int >): Number of threads for parallel processing
4 Returns
Result of matrix-vector multiplication
5 Details
Implements block-based matrix-vector multiplication with:Optional parallel processingConfigurable block sizesThread count controlCache-friendly algorithms
6 Call Graph
7 Source Code
NoteImplementation
File: inst/include/memAlgebra/memMultiplication.hpp • Lines 394-494
inline Rcpp::RObject Rcpp_matrix_vector_blockMult( T A, T B, Rcpp::Nullable<bool> bparal,
Rcpp::Nullable<int> iblock_size, Rcpp::Nullable<int> threads)
{
// NOTA: Per defecte, multiplica per columnes tal i com raja....
bool btransposed = false;
// unsigned int ithreads;
hsize_t block_size;
// int chunks;
Rcpp::NumericMatrix X = Rcpp::as<Rcpp::NumericMatrix>(A);
Rcpp::NumericVector Y = Rcpp::as<Rcpp::NumericVector>(B);
Rcpp::NumericMatrix C;
// Matrix
hsize_t M = X.rows(), N = X.cols();
// Vector
hsize_t K = Y.length();
try {
if( K==N || K==M) {
if ( K == N){
// multiplies vector to every col
btransposed = true;
X = Rcpp::transpose(X);
N = X.rows();
M = X.cols();
}
std::vector<hsize_t> vsizetoRead;
std::vector<hsize_t> vstart;
// ithreads = get_number_threads(threads, bparal);
C = Rcpp::no_init( M, N);
if( iblock_size.isNotNull()) {
block_size = Rcpp::as<int>(iblock_size);
} else {
block_size = getMatrixBlockSize( N, M).at(0);
}
// minimum block size: 2 columns
if(block_size <= 0 ) {
block_size = M*2;
}
// Mínimum block size: 2 columns
getBlockPositionsSizes( M*N, block_size, vstart, vsizetoRead );
// chunks = vstart.size()/ithreads;
#pragma omp parallel num_threads( get_number_threads(threads, bparal) ) shared(A, B, C) //, chunks)
{
#pragma omp for schedule (static)
for (hsize_t ii = 0; ii < vstart.size(); ii ++)
{
// Duplicate vector
std::size_t const no_of_duplicates = vsizetoRead[ii] / Y.length();
std::vector<double> v = Rcpp::as<std::vector<double> >(Y);
v.reserve(Y.size() * no_of_duplicates);
auto end = std::end(v);
for(std::size_t i = 1; i < no_of_duplicates; ++i)
v.insert(std::end(v), std::begin(v), end);
// Mult vector to matrix by columns / rows
if( vstart[ii] + vsizetoRead[ii] >= M*N ) {
std::transform (X.begin() + vstart[ii], X.end(),
v.begin(), C.begin() + vstart[ii], std::multiplies<double>());
} else {
std::transform (X.begin() + vstart[ii], X.begin() + vstart[ii] + vsizetoRead[ii],
v.begin() , C.begin() + vstart[ii], std::multiplies<double>());
}
}
}
} else {
Rcpp::Rcout<< "vector sum error: non-conformable arguments\n";
return(R_NilValue);
}
} catch(std::exception& ex) {
Rcpp::Rcout<< "c++ exception Rcpp_matrix_vector_blockMult: "<<ex.what()<< " \n";
return(R_NilValue);
}
if(btransposed == true){
Rcpp::transpose(C);
}
C.attr("dim") = Rcpp::Dimension( M, N);
return(C);
}8 Usage Example
#include "BigDataStatMeth.hpp"
// Example usage
auto result = Rcpp_matrix_vector_blockMult(...);