## $sig.threshold
## [1] 0.000386
##
## $max.plots
## [1] 1
##
## $model
## [1] "sva"
##
## $qq.inflation.method
## [1] "median"
##
## $practical.threshold
## cg21566642
## 8.297569e-26
##
## $winsorize.pct
## [1] 0.05
##
## $outlier.iqr.factor
## [1] NA
##
## $rlm
## [1] TRUE
##
## $most.variable
## [1] 50000
##
## $random.seed
## [1] 20161123
##
## $sample.size
## [1] 188
For continuous or ordinal variables, the “mean” column provides the mean and the “var” column the standard deviation of the variable. For categorical variables, the “mean” column provides the number of samples with the given “value” and the “var” column the percentage of samples with the given “value”.
variable | value | mean | var |
---|---|---|---|
variable of interest | never | 99 | 52.7 |
variable of interest | current | 89 | 47.3 |
Age | 52.73936 | 11.63027 | |
Sex | F | 144 | 76.6 |
Sex | M | 44 | 23.4 |
Bcell | 0.06601765 | 0.02948774 | |
CD4T | 0.188321 | 0.06010949 | |
CD8T | 0.1090449 | 0.04596973 | |
Mono | 0.09398571 | 0.02091805 | |
Neu | 0.5042772 | 0.0978032 | |
NK | 0.08488758 | 0.03298624 |
statistics
var1 | var2 | F | p-value | R | p-value |
---|---|---|---|---|---|
variable | Age | 0.0001012 | 0.9919836 | -0.0271044 | 0.7119591 |
cases
variable | mean | var | n | t.stat | p.value |
---|---|---|---|---|---|
never | 52.74747 | 156.7621 | 99 | 0.0101488 | 0.9919135 |
current | 52.73034 | 112.8583 | 89 | -0.0101488 | 0.9919135 |
statistics
var1 | var2 | R | p-value |
---|---|---|---|
variable | Sex | 0.054606 | 0.4567064 |
frequencies
F | M | |
---|---|---|
never | 78 | 21 |
current | 66 | 23 |
enrichment p-values
F | M | |
---|---|---|
never | 0.2820187 | 0.8215467 |
current | 0.8215467 | 0.2820187 |
statistics
var1 | var2 | F | p-value | R | p-value |
---|---|---|---|---|---|
variable | Bcell | 0.2366181 | 0.6272321 | -0.1165057 | 0.1113357 |
cases
variable | mean | var | n | t.stat | p.value |
---|---|---|---|---|---|
never | 0.0670116 | 0.0004847 | 99 | 0.4746479 | 0.6357655 |
current | 0.0649121 | 0.0013056 | 89 | -0.4746479 | 0.6357655 |
statistics
var1 | var2 | F | p-value | R | p-value |
---|---|---|---|---|---|
variable | CD4T | 1.708011 | 0.1928572 | 0.0797971 | 0.2763471 |
cases
variable | mean | var | n | t.stat | p.value |
---|---|---|---|---|---|
never | 0.1828989 | 0.0033585 | 99 | -1.301991 | 0.1945799 |
current | 0.1943523 | 0.0038679 | 89 | 1.301991 | 0.1945799 |
statistics
var1 | var2 | F | p-value | R | p-value |
---|---|---|---|---|---|
variable | CD8T | 3.076023 | 0.0811016 | -0.1161131 | 0.1125543 |
cases
variable | mean | var | n | t.stat | p.value |
---|---|---|---|---|---|
never | 0.1145895 | 0.0023595 | 99 | 1.766782 | 0.0789065 |
current | 0.1028774 | 0.0017899 | 89 | -1.766782 | 0.0789065 |
statistics
var1 | var2 | F | p-value | R | p-value |
---|---|---|---|---|---|
variable | Mono | 6.977278 | 0.0089576 | -0.1655813 | 0.0231534 |
cases
variable | mean | var | n | t.stat | p.value |
---|---|---|---|---|---|
never | 0.0977469 | 0.0004783 | 99 | 2.660786 | 0.0084779 |
current | 0.0898019 | 0.0003635 | 89 | -2.660786 | 0.0084779 |
statistics
var1 | var2 | F | p-value | R | p-value |
---|---|---|---|---|---|
variable | Neu | 1.790709 | 0.1824734 | 0.1221984 | 0.0948021 |
cases
variable | mean | var | n | t.stat | p.value |
---|---|---|---|---|---|
never | 0.4952459 | 0.0088404 | 99 | -1.332769 | 0.184292 |
current | 0.5143232 | 0.0102878 | 89 | 1.332769 | 0.184292 |
statistics
var1 | var2 | F | p-value | R | p-value |
---|---|---|---|---|---|
variable | NK | 7.140693 | 0.0082045 | -0.1695074 | 0.0200441 |
cases
variable | mean | var | n | t.stat | p.value |
---|---|---|---|---|---|
never | 0.0908853 | 0.0013115 | 99 | 2.709977 | 0.0073742 |
current | 0.0782160 | 0.0007662 | 89 | -2.709977 | 0.0073742 |
There were 1365 CpG sites with association p-values < 3.86 × 10-4. These are listed in the file associations.csv.
The following table shows overlaps between associations under different sets of covariates:
p.value.none | p.value.all | p.value.sva | |
---|---|---|---|
p.value.none | 661 | 367 | 114 |
p.value.all | 367 | 931 | 135 |
p.value.sva | 114 | 135 | 289 |
Below are the 1 CpG sites with association p-values < 8.2975685 × 10-26 in the sva regression model.
chromosome | position | p.value.none | p.value.all | p.value.sva | coefficient.none | coefficient.all | coefficient.sva | |
---|---|---|---|---|---|---|---|---|
cg05575921 | chr5 | 373378 | 0 | 0 | 0 | -0.2458808 | -0.2451238 | -0.1572324 |
Plots of these sites follow, one for each covariate set. “p[lm]” denotes the p-value obtained using a linear model and “p[beta]” the p-value obtained using beta regression.
Number of CpG sites selected: 1.
chromosome | position | p.value.none | p.value.all | p.value.sva | coefficient.none | coefficient.all | coefficient.sva | |
---|---|---|---|---|---|---|---|---|
cg05575921 | chr5 | 373378 | 0 | 0 | 0 | -0.2458808 | -0.2451238 | -0.1572324 |
## R version 4.1.3 (2022-03-10)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 19045)
##
## Matrix products: default
##
## locale:
## [1] LC_COLLATE=Spanish_Spain.1252 LC_CTYPE=Spanish_Spain.1252 LC_MONETARY=Spanish_Spain.1252 LC_NUMERIC=C LC_TIME=Spanish_Spain.1252
##
## attached base packages:
## [1] stats4 parallel stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] karyoploteR_1.20.3 regioneR_1.26.1 GenomicRanges_1.46.1 GenomeInfoDb_1.30.1 IRanges_2.28.0 S4Vectors_0.32.4 ggrepel_0.9.2
## [8] qqman_0.1.8 meffil_1.3.6 preprocessCore_1.56.0 SmartSVA_0.1.3 RSpectra_0.16-1 isva_1.9 JADE_2.0-3
## [15] qvalue_2.26.0 gdsfmt_1.30.0 statmod_1.5.0 quadprog_1.5-8 DNAcopy_1.68.0 fastICA_1.2-3 lme4_1.1-31
## [22] Matrix_1.5-1 multcomp_1.4-20 TH.data_1.1-1 survival_3.2-13 mvtnorm_1.1-3 matrixStats_0.63.0 markdown_1.4
## [29] gridExtra_2.3 Cairo_1.6-0 knitr_1.43 reshape2_1.4.4 plyr_1.8.8 ggplot2_3.4.2 sva_3.42.0
## [36] BiocParallel_1.28.3 genefilter_1.76.0 mgcv_1.8-39 nlme_3.1-155 limma_3.50.3 sandwich_3.0-2 lmtest_0.9-40
## [43] zoo_1.8-11 MASS_7.3-55 illuminaio_0.36.0 Biobase_2.54.0 BiocGenerics_0.40.0
##
## loaded via a namespace (and not attached):
## [1] backports_1.4.1 Hmisc_5.0-1 BiocFileCache_2.2.1 lazyeval_0.2.2 splines_4.1.3
## [6] digest_0.6.29 ensembldb_2.18.4 htmltools_0.5.4 fansi_1.0.3 checkmate_2.1.0
## [11] magrittr_2.0.3 memoise_2.0.1 BSgenome_1.62.0 cluster_2.1.2 Biostrings_2.62.0
## [16] annotate_1.72.0 askpass_1.1 prettyunits_1.1.1 colorspace_2.1-0 blob_1.2.4
## [21] rappdirs_0.3.3 xfun_0.39 dplyr_1.1.2 crayon_1.5.2 RCurl_1.98-1.9
## [26] VariantAnnotation_1.40.0 glue_1.6.2 gtable_0.3.3 zlibbioc_1.40.0 XVector_0.34.0
## [31] DelayedArray_0.20.0 scales_1.2.1 bezier_1.1.2 DBI_1.1.3 edgeR_3.36.0
## [36] Rcpp_1.0.9 htmlTable_2.4.1 xtable_1.8-4 progress_1.2.2 clue_0.3-64
## [41] foreign_0.8-82 bit_4.0.5 Formula_1.2-5 htmlwidgets_1.6.0 httr_1.4.6
## [46] RColorBrewer_1.1-3 calibrate_1.7.7 farver_2.1.1 pkgconfig_2.0.3 XML_3.99-0.13
## [51] nnet_7.3-17 dbplyr_2.3.2 locfit_1.5-9.6 utf8_1.2.2 labeling_0.4.2
## [56] tidyselect_1.2.0 rlang_1.1.1 AnnotationDbi_1.56.2 munsell_0.5.0 tools_4.1.3
## [61] cachem_1.0.6 cli_3.4.1 generics_0.1.3 RSQLite_2.2.18 evaluate_0.21
## [66] stringr_1.5.0 fastmap_1.1.0 yaml_2.3.7 bit64_4.0.5 AnnotationFilter_1.18.0
## [71] KEGGREST_1.34.0 xml2_1.3.3 biomaRt_2.50.3 compiler_4.1.3 rstudioapi_0.14
## [76] filelock_1.0.2 curl_4.3.3 png_0.1-8 tibble_3.2.1 stringi_1.7.6
## [81] highr_0.10 GenomicFeatures_1.46.5 lattice_0.20-45 ProtGenerics_1.26.0 nloptr_2.0.3
## [86] vctrs_0.6.3 pillar_1.9.0 lifecycle_1.0.3 BiocManager_1.30.19 data.table_1.14.8
## [91] bitops_1.0-7 rtracklayer_1.54.0 R6_2.5.1 BiocIO_1.4.0 codetools_0.2-18
## [96] dichromat_2.0-0.1 boot_1.3-28 SummarizedExperiment_1.24.0 openssl_2.0.6 rjson_0.2.21
## [101] withr_2.5.0 GenomicAlignments_1.30.0 Rsamtools_2.10.0 GenomeInfoDbData_1.2.7 hms_1.1.3
## [106] rpart_4.1.16 grid_4.1.3 bamsignals_1.26.0 base64_2.0.1 minqa_1.2.5
## [111] rmarkdown_2.23 MatrixGenerics_1.6.0 biovizBase_1.42.0 base64enc_0.1-3 restfulr_0.0.15